Ben Shepard
Ben Shepard

Science & Society News

Learn what is happening inside the Duke Initiative for Science & Society. Stay up-to-date on our research, events, and student activities.

Wed, Mar 15

SciPol Adds Nanotechnology to its Science Policy Coverage

Nanotechnology Policy Updates on

Nanotechnology has piqued the interest of popular science enthusiasts, investors and scientists for more than a decade, perhaps because the new ability to manipulate matter at the atomic scale promises to revolutionize so many disparate fields of technological development.

Although nanotechnology is a relatively young field, its practical achievements include use in improved electric car batteries, increased crop yield production with slow-release fertilizer, and bolstering the ability of the body’s own immune system to fight cancer.

Though experiments with nanoscale matter date back to the Roman Empire, nanotechnology first took center stage as a field of its own in 1996 when the Nobel Prize in Chemistry was awarded for the discovery of C60 fullerenes, or the Buckminsterfullerene (Bucky Balls).

Then again in 2016, the Nobel Prize in Chemistry was awarded for the design and synthesis of molecular machines. Proponents of nanotechnology laud its emergence as the catalyst of the next industrial revolution. Economic contributions forecast an annual associated value of one trillion dollars (revenue from nano-enabled products grew worldwide from $339 billion in 2010 to more than $1 trillion in 2013).


The Current State of Nanotech Policy

The U.S. government first established the National Nanotechnology Initiative (NNI) under the Clinton administration, to support world-class research, user facilities, and technology transfer from lab to commercial enterprise. As a result of the 21st Century Nanotechnology Research and Development Act of 2003, NNI agencies are required to update an NNI Strategic Plan every three years.  The most recent version was published in 2016, which outlines goals for nanotechnology research, development, and commercialization enterprises.

As a result of authority provided in the Frank R. Lautenberg Chemical Safety for the 21st Century Act (Public Law 114-182), the Environmental Protection Agency (EPA) issued a final rule on nanomaterial reporting for those who manufacture, process, or import such materials for commercial purposes. The new rule will allow EPA to gather risk-relevant information on nanoscale materials, which is essential for understanding and managing potential risks to health and the environment.

Company HE3DA President Jan Prochazka shows qualities of a new battery during the official start of a battery production line in Prague, on Monday, Dec. 19, 2016. Read more at:

Nanomaterials Are Difficult to Categorize for Policymakers

Stakeholders are still grappling with how to legally define nanomaterials in a way that is broadly accurate and useful in terms of supporting categorization and management.

Indeed, there is not even broad consensus that a strict deductive definition would constitute the most useful approach to developing policies regarding innovation and protection of human and environmental health; however, the absence of a globally agreed upon definition poses challenges to agencies charged with regulating these novel materials.

Some have moved ahead with the idea that an inductive definition is the better way to advance the science to the point that it could support rational regulation. Meaning, you can point to an example and address it as a nanomaterial, but you may not be able to create a universal definition that applies across all instances of a nanoscale material.


What’s Next?

Thus far, initial forays into proposing policies to address nanomaterial management have arisen on a case by case basis in reaction to either specific products being registered with the EPA, or in reaction to revisions and updates to environmental protection laws.

National and international consortia of scientists and regulators are beginning work to standardize data formatting to enable the sharing and comparing of information. These efforts within the growing field of nanoinformatics are new, and are characterized by considerable uncertainty and variability since the methods and materials involved in nanotechnology are still under development.

Therefore, the near-term goals are to develop suggested standards, and processes for developing and communicating new standards, within the nanomaterial research communities. Longer term, the field of nanoinformatics will ideally mature to provide a well-defined consistent set of data requirements and supporting controlled vocabulary not unlike what developed to support the human genome project. Such a consistent system of integrated tracking and communication of peer-reviewed nanomaterial studies would be used to guide new research directions as well as enable cross-study analyses to guide regulation agencies in policy development.

Policy developments on the topic of data standardization will also be covered within the nanotechnology vertical, since consistently integrated datasets will serve as the driver of data submission requirements as well as interpretation of those data with respect to emerging policy.


About Nancy

Nancy BirknerNancy Birkner oversees the development and publication of SciPol content related to this topic.  She is also a Postdoctoral Associate at the Center for Environmental Implications of Nanotechnology (CEINT) where she works to enable global sharing of nanomaterial data.

For her scientific interests, Nancy studies the fundamental nature of nanomaterials, which are materials that are thousands of times smaller than the eye can see. These materials behave (or react) much differently than larger-scale materials and may impact the health and safety of humans and the environment as well as produce disruptive technologies to benefit of society. Her Ph.D. in Chemistry produced three new major science discoveries using experimental nanomaterial thermodynamics under the supervision of Professor Alexandra Navrotsky, who is also fondly referred to as “The mother of thermodynamics”.  Nancy’s work is published in Science magazine as well as in the Proceedings of the National Academy of Sciences.



Center for the Environmental Implications of NanoTechnology LogoCEINT ( is examining the relationships between nanomaterial (natural and man-made) interactions with biological, ecological, and environmental systems. The Center for the Environmental Implications of NanoTechnology NanoInformatics Knowledge Commons (CEINT-NIKC), headquartered at Duke University, is developing the integrative methodologies, unique cyberinfrastructure, and associated analytical tools that will allow interrogation of nanomaterial research.

Visit for news, updates, and opportunities to engage in Nanotechnology policy developments.

Tue, Feb 07

Science Policy In The Classroom

Students in the Duke Law School are making it easy for you to follow developments in science policy. When an alternative to writing yet another standard paper was proposed in their Science, Law & Policy class, the majority of the participants jumped at the opportunity.

SciPol focuses on tracking and analyzing developments in science policy. Faculty and students from around campus receive training and hands-on experience analyzing current policy actions in order to contribute to SciPol’s signature Policy Developments. The program launched last year and is now being incorporated into curriculum on campus.


Duke Law student Sarah Williamson studies national security law and policy. She enrolled in the Science, Law & Policy class last fall and opted to contribute to SciPol over writing a mid-term paper.

She recognizes how difficult it is for policymakers to keep up on rapid advancements in science and technology and how scientists struggle to convey their research and its impact in a way that non-scientists can understand. This gap presents an opportunity for Duke students.

“We need leaders,” says Sarah. “We need civically-minded people to think about the challenges of today.” – a tenet shared by the SciPol program.

She became drawn to policy issues surrounding cybersecurity and data privacy early in her education. She currently examines the technology that connects our world and its impact on national security and civil rights.

“I started to see national security as the trunk of the policy tree and every decision we make stems from that.”

Sarah’s focus may already feel somewhat familiar. We live in a society where cybersecurity and data privacy are ubiquitous concerns. Simply owning a smart phone or transacting online makes them inescapable, personally relevant issues.

The 2016 presidential race brought numerous cybersecurity issues to the forefront of public discourse. Leaked emails and allegations that Russia had tampered with the election via state-sponsored cyber activities left many feeling confused, cheated, or helpless during the election process.

From a commercial standpoint the issues take on additional dimension. New emerging technologies encourage consumers to eagerly, and often unknowingly, volunteer their information to a hungry data-driven market.

The rush to bring the next great technological convenience to market often results in woefully unsecure products or ethically questionable functionality. Take for instance the massive Internet outage last year, powered by easily hacked cameras and DVR equipment. Or Cayla, the intrusive doll that spies on your kids, sending voice recordings back to her toymaker’s servers.



Civic-minded leaders face difficult questions.

What is the government’s role in guarding individual data and consumer privacy as new technology is invented and introduced to the market? Should a private company be held accountable for vulnerabilities in their software or hardware that result in personal loss? To what extent should we forsake personal privacy in the name of national security?

Understanding the science and technology behind these questions is necessary for policymakers and the public to come to proper conclusions.

Similar questions exist in all corners of scientific research and the landscape is constantly shifting. The issues aren’t always so familiar and can become difficult to consider without special training or education. Even in the small Science, Law & Policy class a communication gap quickly emerged.

“The fact that we were on different planets was very clear from the beginning,” says Sarah, recalling the variety of student backgrounds in the Science, Law & Policy class. “In the first week we were talking about CRISPR and I’m like what the heck is this?”

CRISPR is a revolutionary genome editing tool with controversial applications.

Only 6 of the 18 other members in Sarah’s class were law students. The rest were a mix of master’s students and PhD’s with various educational backgrounds. Few had any experience in the policymaking process.

Making complicated policy actions and the science behind them more accessible to the public is one step toward cultivating a civically-minded population. Engaging relevant actors at each step of the policymaking process strengthens the conversation and the outcome.

By incorporating science policy analysis in the classroom, Duke University is training its students to consider these issues wherever they end up working.

Buz Waitzkin, JDProfessor Michael “Buz” Waitzkin, JD, teaches the Science, Law & Policy course.

“Whatever career path you take, much of the work you will be doing is going to be governed by statutes that are passed, regulations that are enacted, or court decisions that are issued. If you can’t understand them, I think you’re job effectiveness will really be inhibited.”

The opportunity to participate in SciPol is a fresh and informative experience for his class. Students come away with a better understanding of how science policy is formulated and translated into law or regulations. Understanding how their own research will go on to affect the public helps contextualize their efforts beyond the lab and broadens their impact on society.

In turn, those without formal STEM or policy training are given an approachable resource that informs their own civic activity.

Read Sarah’s SciPol contributions and more at

Wed, Jan 18

New Bass Connections Project Explores Privacy, Consumer EEG Devices, and the Brain

Each year Bass Connections brings together faculty, graduate students, and undergraduates to tackle complex societal challenges through a variety of interdisciplinary themes. Science & Society and Duke Psychiatry & Behavioral Sciences, is excited to announce the acceptance of their 2017-2018 project proposal to study privacy, consumer EEG devices, and the brain.

Students use a consumer EEG device to conduct research

The new project is aimed at exploring the unique concerns surrounding the collection of data generated though wearable tech – like the EMOTIV Insight. It is already possible to track brain activity as it relates to basic emotional and physical states. As this technology becomes more widespread, we can expect a bloom of neural activity data among the ever-increasing wealth already accumulating in our tech and data-driven society.

The project team will explore three specific questions:

  • Do consumers vary in their expectations of privacy and willingness to share brain information with government, corporations, employers, researchers and others?
  • Are there differences between consumer users and nonusers of consumer EEG devices with regard to their perceptions, behaviors and attitudes about brain privacy and EEG devices?
  • Do differences in perceptions and attitudes about brain privacy help to explain differences in use and behavior of consumer EEG devices?

Team members will collaborate with Science & Society’s SLAP Lab on a weekly basis and will be trained in the methodologies used in the research. The team is seeking two postdocs, three graduate/professional students, and four undergraduates. Applications will open on January 24 and run through February 17 at 5:00 p.m.

Learn more about the Privacy, Consumer EEG Devices, and the Brain Project and additional opportunities for students on the Bass Connections website or during the Bass Connections Fair on Tuesday, January 24 2:30-5:30.

Thu, Jan 12

SciPol Adds Robotics & AI to its Science Policy Coverage

SciPol LogoThe rapid advance of technology is bringing robots and artificial intelligence, or AI, closer to us every day, including in factories, hospitals, highways, schools, our offices, and our homes. But the technology is advancing so quickly that it’s outpacing our ability to fully grasp its impact, and for policymakers to resolve the difficult balance that reduces risk to the public without constraining the development of these potentially beneficial technologies.

2016 alone gave us multiple significant policy developments. In June the Federal Aviation Administration (FAA) released amendments to its regulations to address the operation of unmanned aircraft systems and pilot certification to preserve safety in the National Airspace System. In September, the National Highway Transportation Safety Administration (NHTSA) released guidance to industry and regulators for safe design, state policy recommendations, and regulatory tools for highly automated vehicles.

In October, the National Science and Technology Council Committee on Technology released a report including recommendations to U.S. Federal agencies and other actors to inform future AI policy. We can expect the U.S. government will implement even more robotics and AI-specific regulations to preserve jobs and to address concerns of security, safety, and privacy within the next few years.

This is an exciting and dynamic area with rapidly evolving developments in policy and science. SciPol provides a single resource covering both, including policy updates and explanations of the relevant science on topics like drones, surgical robots, driverless cars and artificial intelligence.

About Michael

Dr. Michael ClamannMichael Clamann oversees the development and publication of SciPol content related to robotics and AI. He is also a Senior Research Scientist in the Humans and Autonomy Lab (HAL) within Duke Robotics and an Associate Director at the Collaborative Sciences Center for Road Safety.

For his scientific research, he works to better understand the complex interactions between robots and people and how they influence system effectiveness and safety. He presented technical remarks to the Department of Transportation on the current Federal Automated Vehicles Policy, and his research has appeared in major news outlets including NPR and the Atlantic.

He received a PhD and MIE in Industrial and Systems Engineering and a MS in Experimental Psychology from North Carolina State University. He has worked in industry as a Human Factors Engineer since 2002, supporting government and private clients in domains including aerospace, defense and telecommunications. He is also a Certified Human Factors Professional (CHFP).

About HAL

Research in Duke University’s Humans and Autonomy Lab (HAL) focuses on the multifaceted interactions of human and computer decision-making in complex sociotechnical systems with embedded autonomy.

An experiment on how autonomous vehicle may interact with pedestriansGiven the explosion of autonomous technology in aviation, medicine, and even in everyday mundane environments like driving, the need for humans as supervisors of and collaborators in complex autonomous control systems has replaced the need for humans in direct manual control.

Instead of relying on humans for well-rehearsed skill execution and rule following that requires significant practice and memorization (and subject to problems such as fatigue and boredom), autonomous systems need humans for their more abstract levels of knowledge synthesis, judgment, and reasoning. Autonomous systems today, and even more so in the future, require coordination and teamwork for mutual support between humans and machines for both improved system safety and performance.

Visit for news, updates, and opportunities to engage in robotics and AI policy developments.

Wed, Nov 30

Two Duke PhD Students Win Grant to Study Science & Technology Policy Fellowship Feasibility in NC

Two Duke University PhD candidates have been awarded a $25,000 grant to study the feasibility of establishing a North Carolina Science and Technology Policy Fellowship Program.

ccst-grant-award-featureThe California Council on Science and Technology (CCST) in partnership with the Gordon and Betty Moore Foundation and Simons Foundation is funding multiple grants to support planning processes for creating immersive science and technology policy fellowship programs in state legislature.

Few state legislators have backgrounds in science, engineering, or technology, yet they are routinely called on to make decisions on issues with complicated scientific and technological components. The Fellowship Program would provide the state legislature with non-partisan science PhDs to assist them in grappling with the complex issues of science underlying many legislative initiatives.

Andrew George and Dan Keeley, researchers in the Duke Biology PhD program, won their bid for North Carolina with support from Science & Society, the Sanford School for Public Policy, the Duke Government Affairs Office, and the North Carolina Sea Grant Program.

“We are going to have to work hard to engage public and private universities, business, and non-profits as well as legislators and members of the executive branch throughout the entire process to ensure that we are creating a fellowship that best serves the needs of the fellows and state policy,” says George. “A primary challenge of implementation is the difference in structure of the legislatures.”

Both researchers became active in science policy after a government shutdown froze federal spending on research. During meetings on the hill they were pleasantly surprised by how engaged and interested many of the staffers were in hearing about their research.

The model California fellowship has impacted over 800 bills, hearings, and actions since it began placing PhD-level scientists in the state’s legislature for one-year appointments. Of those fellows placed, 50% were hired by the state legislature or other state agencies at the end of their fellowship.

The CCST seeks to replicate the model in other states. Their vision for the future is a network of state-based science advising programs that better inform state legislatures on science and technology relevant policy issues.

Andrew and Dan will be interested in a variety of perspectives from students, postdocs, and early career faculty regarding what they would want from a fellowship like this. Contact Andrew George, or Dan Keeley, for more information.

At Science & Society we are training the next generation of leaders to be better equipped in this rapidly expanding environment. Our Masters in Bioethics & Science Policy prepares students to identify, analyze, and propose solutions to myriad complex issues at the intersection of science, technology, ethics, and policy.

In addition, Science & Society’s recently launched SciPol program serves as a comprehensive online resource for scientists, policy makers, the public, students, and other stakeholders on developments in science and technology policy.

Filter by
Research Areas
Area Sub Categories
Key Words